Received: October 9, 1978

SHORT COMMUNICATION

Perfluoroalkyl Derivatives of Nitrogen. Part XLV1 [1]. Thermolysis and Photolysis of Heptafluoro-1-nitrosopropane

R.E. BANKS, W.T. FLOWERS, and R.N. HASZELDINE

Chemistry Department, The University of Manchester Institute of Science and Technology, Manchester M60 1QD (Great Britain)

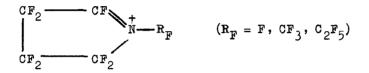
The modes of thermal [2] and photochemical [3] decomposition of trifluoronitrosomethane have been studied in some detail. Much less effort [4,5] has been spent on the corresponding chemistry of the equally accessible higher homologue heptafluoro-1-nitrosopropane [6], which was investigated as described below following the chance observation [7] that it gave a mass spectrum compatible with a mixture of the derivatives $n-C_3F_7N=CFC_2F_5$ (I)(mainly), $n-C_3F_7NO_2$ (II), and $(n-C_3F_7)_2NOC_3F_7-n$ (III) when analysed with an instrument inlet temperature of $150 \ ^{\circ}C.*$

Previously [4], heptafluoro-l-nitrosopropane was flow-pyrolysed in platinum at 250 °C and 7-9 mmHg pressure to give mainly the hydroxylamine derivative $(n-C_3F_7)_2NOC_3F_7-n$ (III) (88% yield) plus, <u>inter alia</u>, $C_3F_7NO_2$ (II; 7%) and $n-C_3F_7N=CFC_2F_5$ (I; 1.5%). In order to broaden this knowledge of the thermal decomposition of the nitroso-compound, and to check on the information gained from the result of

^{*}Preliminary thermal decomposition of trifluoronitrosomethane does not occur under identical conditions.

mass-spectrometric analysis mentioned above, a small sample (1.32 g, 6.63 mmol) of heptafluoro-l-nitrosopropane was stored at 80 $^{\circ}$ C for 24 h in the absence of air in a Pyrex ampoule (30 cm^3) . It underwent complete decomposition, and fractionation of the volatile product afforded pure samples of the aza-alkene (I) (0.80 g, 2.40 mmol, 72%), the nitroalkane (II) (0.15 g, 0.72 mmol, 11%), and the tri-substituted hydroxylamine (III) (0.091 g, 0.17 mmol, 8%), which were identified by i.r. spectroscopy and mass spectrometry (see the Table). Formation of these products concurs with previous observations and mechanistic postulates [2,4] about thermal reactions of perfluoronitrosoalkanes.

No literature report appears to exist of a serious attempt to determine the outcome of photochemical decomposition of heptafluoro-l-nitrosopropane; photo-acceleration of the decomposition of a sample of the nitroso-compound has been observed, but the product was not examined in detail $\begin{bmatrix} 5 \end{bmatrix}$. In the present investigation, heptafluoro-l-nitrosopropane (2.03 g, 10.2 mmol) contained in a silica ampoule $(40, \text{cm}^3)$ was exposed to U.V. (mainly 2537 Å) light (Hanovia 500w mercury vapour lamp placed about 15cm distant) for 18 h. Trap-to-trap fractional condensation, in vacuo, of the complex product followed by g.l.c. and spectroscopic analysis of the material collected at -22 and 0 $^{\circ}$ C revealed the formation of the compounds $(n-C_{3}F_{7})_{2}NONO, (n-C_{3}F_{7})_{2}NNO_{2}, (n-C_{3}F_{7})_{2}NOC_{3}F_{7}-n, (n-C_{3}F_{7})_{3}N,$ and $(n-C_3F_7)_2NN(C_3F_7-n)_2$. Distillation at atmospheric pressure provided a constant-boiling (81.5 °C) mixture (1.54 mmol, 30% yield) of the nitroso-dimers $(n-C_3F_7)_2NNO_2$ and $(n-C_3F_7)_2$ NONO, which decomposed when subjected to preparative


g.l.c. and was identified by i.r. analysis $[\lambda_{max.}(vap.)$ 6.01 µm {asym.NO₂ str; <u>cf</u>.[8] (CF₃)₂NNO₂, 5.99 µm} and 5.5br µm {N=0 str; <u>cf</u>. [9] (CF₃)₂NONO, 5.47, 5.55 µm (d)}] and mass spectrometry. Again, existing mechanistic schemes (initial photodissociation of the nitroso-compound <u>via</u> homolytic C-N fission followed by a series of addition and combination reactions [3,5]) can be adapted to explain the outcome of this experiment. Thus, isolation of the 'dimer' of heptafluoro-1-nitrosopropane, $(n-C_3F_7)_2$ NONO, remains a challenge.

· · · · · · · · · · · · · · · · · · ·	
cf ₃ no [.] c	<u>99</u> ,(3.5)CF ₃ NO, 69(89)CF ₃ ,64(3.9)CF ₂ N, 50(18)CF ₂ , 31(7.5)CF, 30(<u>100</u>)NO
n-0 ₃ F7NO C	<u>199</u> (0.4)C ₃ F7N0, 169(21)C ₃ F7,150(3.4)C ₃ F6, 119(15)C ₂ F5,100(25)C ₂ F4, 69(55)CF3, 50(5.3)CF2,31(13)CF, 30(<u>100</u>)NO
n-C ₃ F ₇ N=CFC ₂ F ₅ d (I)	333(0)C ₆ F ₁₃ N,314(2.9)C ₆ F ₁₂ N, 214(11)C ₄ F ₈ N,169(55)C ₃ F ₇ ,119(17)C ₂ F ₅ , 100(18)C ₂ F ₄ ,69(<u>100</u>)CF ₃ , 31(13)CF
n-C ₃ F ₇ NO ₂ <u>e</u> (II)	<u>215</u> (0.05)C ₃ F7NO ₂ ,169(81)C ₃ F7, 119(31)C ₂ F5,100(20)C ₂ F4,69(<u>100</u>)CF3, 50(4.5)CF2,46(23)NO ₂ ,31(10)CF,30(38)NO
$(n-c_{3}F_{7})_{2}Noc_{3}F_{7}-n \stackrel{f}{=}$ (III)	$\frac{537}{(0)}_{9}_{F_{21}}^{N0,418(1.2)}_{7}_{F_{16}}^{F_{16}}^{N0,}$ $368(2.7)_{6}_{F_{14}}^{F_{14}}^{N0,314(8.7)}_{6}_{F_{12}}^{F_{16}}^{F_{12}}^{N,}$ $214(18)_{6}_{4}_{F_{8}}^{F_{8}}^{F_{8}}^{N,169(\underline{100})}_{3}_{F_{7}}^{F_{7}}^{F_{16}$

TABLE Mass Spectral Data a, b

- AEI MS2 Spectrometer; source temp. 80 ^OC, electron beam energy 55eV.
- b For each compound the molecular ion and up to eight most abundant fragment ions are shown in order of decreasing mass as <u>m/e</u> (rel.int.%).

- <u>C</u> The low intensity of $\underline{M}^{+\bullet}$, coupled with the identity of the base peak (NO⁺), arises from the powerful -I effect of the perfluoroalkyl group.
- ^d The spectrum is noteworthy for the complete absence of a molecular ion and for the presence of the even-electron series $C_{\underline{n}}F_{2\underline{n}}N^+$ [$\underline{n} = 4.5$ (rel.int. 1%),6] which may well be cyclic, as for the hydrocarbon analogue:

- ^e The appearance of the fragment NO_2^+ , not found in the spectrum of the hydrocarbon analogue, reflects the →I effect of the n-C₃F₇ group. Also of interest is that the molecular ion loses nitric oxide, as does that of nitrobenzene.
- $\frac{f}{1}$ A metastable peak at <u>m/e</u> 126, previously ascribed [4] to the transition

 $C_4 F_8 NO^+(230) \longrightarrow C_3 F_7^+$ (169) + CFNO (61)(<u>m/e</u> calc.124.2) is now reassigned to the fragmentation

 $C_4 F_8 N^+(214) \longrightarrow C_3 F_6 N^+(164) + CF_2(50)$ (<u>m/e</u> calc.125.7) The expected primary β -cleavage of the molecular ion presumably yields the fragment $CF_2 = N(C_3 F_7) OC_3 F_7$ rather than $(C_3 F_7)_2 N \dot{O} = CF_2$.

- 1 Part XLV, R.E. Banks, R.N.Haszeldine, and P.E. Jackson, J. Fluorine Chem., <u>12</u> (1978) 153.
- 2 D.A. Barr, R.N. Haszeldine, and C.J. Willis, J. Chem.Soc., (1961) 1351; A. Ya.Yakubovich, S.P.Makarov, V.A.Ginsburg, N.F. Privezentseva, and L.L. Martynova, Doklady Akad. Nauk S.S.S.R., <u>141</u> (1961) 125; R.E. Banks, M.G. Barlow, R.N. Haszeldine, M.K. McCreath, and H. Sutcliffe, J. Chem Soc. (1965) 7209.
- 3 R.N. Haszeldine and B.J.H. Mattinson, J. Chem.Soc., (1957) 1741; J. Mason, J. Chem. Soc., (1963), 4531 and 4537; A.H. Dinwoodie and R.N. Haszeldine, J. Chem. Soc., (1965) 1675; C.A.F.Johnson, V. Freestone, and J.Giovanacci, J. Chem. Soc. Perkin Trans.II, (1978) 584.
- 4 R.E. Banks, M.G. Barlow, R.N. Haszeldine, and M.K.McCreath, J. Chem. Soc., (1965) 7203.
- 5 J. Mason, J. Chem. Soc., (1963) 4537.
- 6 Both nitroso-compounds are best made via the route $(R_FC0)_20$ (available commercially) $\xrightarrow{N_20_3}$

 $R_{FCO_{O}NO} \longrightarrow R_{FNO}$ [R.E. Banks, M.G. Barlow,

R.N. Haszeldine, and M.K. McCreath, J. Chem.Soc.(C), (1966) 1350; R.E. Banks, K.C. Eapen, R.N.Haszeldine, A.V. Holt, T. Myerscough, and S. Smith, J. Chem.Soc. Perkin Trans.I, (1974) 2532].

- 7 W.T. Flowers, Ph.D. Thesis, University of Manchester, 1968.
- 8 J. Mason, J. Chem.Soc., (1963) 4531; A.H. Dinwoodie and R.N. Haszeldine, <u>ibid</u>., (1965) 1675.
- 9 J. Jander and R.N. Haszeldine, J. Chem. Soc., (1954) 696; R.N. Haszeldine and B.J.H. Mattinson, J. Chem. Soc., (1957) 1741.